This paper presents a *u-p* (displacement-pressure) semi-Lagrangian reproducing kernel (RK) formulation to effectively analyze landslide processes. The semi-Lagrangian RK approximation is constructed based on Lagrangian discretization points with fixed kernel supports in the current configuration. As a result, it tracks state variables at discretization points while allowing extreme deformation and material separation that is beyond the capability of Lagrangian formulations. The *u-p* formulation following Biot theory is incorporated into the formulation to describe poromechanics of saturated geomaterials. In addition, a stabilized nodal integration method to ensure stability of the domain integration and kernel contact algorithms to model contact between bodies are introduced in the *u-p* semi-Lagrangian RK formulation. The proposed method is verified with several numerical examples and validated with an experimental result and the field data of an actual landslide.

Vertical drains are widely used in soft ground improvements to accelerate the consolidation process. This paper develops a new simplified Hypothesis B method for calculating the consolidation settlement of a soil layer improved by vertical drains under the instant and ramp loadings. As a comparison, the traditional Hypothesis A method is also used to calculate the settlement. Then, a fully coupled finite element consolidation analysis is utilized to examine and verify this simplified method and Hypothesis A method. For the instant loading, Carrillo-Barron method and Zhu-Yin method are used to obtain the average degree of consolidation for vertical drain system. Typical parameters, such as over-consolidation ratio (*OCR*), smear zone, and space ratio of vertical drains, are considered. It is found that the calculation results from the new simplified method in this study agree well with finite element simulations, and *relative errors* are in the range of 0.1% to 12.3%. Comparatively, there are obvious differences between the calculated results from Hypothesis A method and finite element results. Carrillo-Olson method and Zhu-Yin method are utilized to obtain the average degree of consolidation for the vertical drain system to consider the ramp loading. Equivalent time is determined from half of the construction period to calculate the creep compression under the ramp loading. The accuracy of this simplified Hypothesis B method using both Carrillo-Olson method and Zhu-Yin method is acceptable with the *relative errors* less than 9.4%.

In this paper, we propose a method to detect the damage and estimate the degree of damage by means of a multifield-based inverse analysis. The fields being considered are displacement, temperature, and water pressure. Furthermore, the uncertainties due to the size of the damage, the errors in the measurement data, and the errors in the model parameters are also investigated. The uncertainty due to the measurements is quantified by assuming different sources of noise in the measurements. The inverse problem is solved repeatedly by a sampling process. The uncertainties in the inverse solutions can be quantified by their probability distributions. This method can be applied to identify damages in masonry dams using coupled nonlinear thermo-hydro-mechanical problems.

This paper presents a thermo-hydro-mechanical framework to model the drying behavior of Boom clay. First, the experimental campaign conducted Noémie Prime is briefly presented because it is used to validate the model. The data acquisition and processing is emphasized because of the use of X-ray microtomography to be able to more accurately compare experimental and numerical strain fields. The different submodels are introduced. Numerical simulations are performed to illustrate the capability of the proposed model to reproduce the observed behavior. Finally, a comprehensive sensitivity study on several key model parameters associated with the water retention curve, and the permeability of the medium, is performed to get a better understanding of the physics behind the coupled model.

The effect of heterogeneity in meso level geometric and material properties on tensile strength and size effect in split cylinder specimens is investigated. Critical meso geometric parameters are identified by studying their influence on the evolution of the fracture process zone. A statistical analysis is used to account for dependencies between the parameters. A reversal of the size effect, important for the strength of field specimens, is observed for certain meso geometries. Meso level explanations for this are proposed, and meso geometries likely to show such a reversal are identified. For moderately sized specimens, major trends in the size effect are seen to be almost entirely explained by heterogeneity in the meso geometry.

This paper presents an algorithm and a fully coupled hydromechanical-fracture formulation for the simulation of three-dimensional nonplanar hydraulic fracture propagation. The propagation algorithm automatically estimates the magnitude of time steps such that a regularized form of Irwin's criterion is satisfied along the predicted 3-D fracture front at every fracture propagation step.

A generalized finite element method is used for the discretization of elasticity equations governing the deformation of the rock, and a finite element method is adopted for the solution of the fluid flow equation on the basis of Poiseuille's cubic law. Adaptive mesh refinement is used for discretization error control, leading to significantly fewer degrees of freedom than available nonadaptive methods. An efficient computational scheme to handle nonlinear time-dependent problems with adaptive mesh refinement is presented. Explicit fracture surface representations are used to avoid mapping of 3-D solutions between generalized finite element method meshes. Examples demonstrating the accuracy, robustness, and computational efficiency of the proposed formulation, regularized Irwin's criterion, and propagation algorithm are presented.

Shear bands with characteristic spatial patterns observed in an experiment for a cubic or parallelepiped specimen of dry dense sand were simulated by numerical bifurcation analysis using the Cam-clay plasticity model. By incorporating the subloading surface concept into the plasticity model, the model became capable of reproducing hardening/softening and contractive/dilative behavior observed in the experiment. The model was reformulated to be compatible with the multiplicative hyperelasto-plasticity for finite strains. This enhanced constitutive model was implemented into a finite-element code reinforced by a stress updating algorithm based on the return-mapping scheme, and by an efficient numerical procedure to compute critical eigenvectors of elastoplastic tangent stiffness matrix at bifurcation points. The emergence of diamond- and column-like diffuse bifurcation modes breaking uniformity of the materials, followed by the evolution of shear bands through strain localization, was observed in the analysis. In the bifurcation analysis of plane strain compression test, unexpected bifurcation modes, which broke out-of-plane uniformity and led to 3-dimensional diamond-like patterns, were detected. Diffuse bifurcations, which were difficult to observe by experiments, have thus been found as a catalyst creating diverse shear band patterns.

A rigorous semianalytical solution for the drained expansion of a cylindrical cavity in frictional soils is presented. Following the restrict material (Lagrangian) description approach recently developed by the authors, the cavity analysis has been extended to the 3-invariant plasticity soil model, which is governed by the Matsuoka-Nakai yield criterion combined with the friction angle hardening depending on the development of deviatoric plastic strain. The 4 desired first-order ordinary differential equations are subsequently derived, which enable the 3 stress components, volumetric strain, and plastic shear strain in the plastic zone to be readily calculated through the standard numerical procedure. Numerical examples illustrate how the major constitutive parameter, in situ stress state, and the third stress invariant impact the overall response of the cavity as well as its ultimate pressure. Specific consideration is given to the influence of the plastic hardening parameter on the stress path of a soil element at the cavity wall.

Studying seismic wave propagation across rock masses and the induced ground motion is an important topic, which receives considerable attention in design and construction of underground cavern/tunnel constructions and mining activities. The current study investigates wave propagation across a rock mass with one fault and the induced ground motion using a recursive approach. The rocks beside the fault are assumed as viscoelastic media with seismic quality factors, *Q*_{p} and *Q*_{s}. Two kinds of interactions between stress waves and a discontinuity and between stress waves and a free surface are analyzed, respectively. As the result of the wave superposition, the mathematical expressions for induced ground vibration are deduced. The proposed approach is then compared with the existing analysis for special cases. Finally, parametric studies are carried out, which includes the influences of fault stiffness, incident angle, and frequency of incident waves on the peak particle velocities of the ground motions.

Data assimilation, using the particle filter and incorporating the soil-water coupled finite element method, is applied to identify the yield function of the elastoplastic constitutive model and corresponding parameters based on the sequential measurements of hypothetical soil tests and an actual construction sequence. In the proposed framework of the inverse analysis, the unknowns are both the particular parameter within the exponential contractancy model, *n*_{E}, which parameterizes various shapes for the yield function of the competing constitutive models, including the original/the modified Cam-Clay models and in-between models and the parameters of the corresponding constitutive model. An appropriate set, consisting of the yield function of the constitutive model and the parameters of the constitutive model, can be simultaneously identified by the particle filter to describe the most suitable soil behavior. To examine the validity of the proposed procedure, hypothetical and actual measurements for the displacements of a soil specimen were obtained for consolidated and undrained tests through a synthetic FEM computation and for consolidated and drained tests, respectively. After examining the applicability of the proposed procedure to these test results, the present paper then focuses on the actual measured data, ie, the settlement behavior including the lateral deformation of the Kobe Airport Island constructed on reclaimed land.

In this paper, the analytical dual-porosity dual-permeability poromechanics solution for saturated cylinders is extended to account for electrokinetic effects and material transverse isotropy, which simulate the responses of chemically active naturally fractured shale under time-dependent mechanical loading and ionic solution exposure. The solution addresses the stresses, fracture pore pressure, matrix pore pressure, fluid fluxes, ion concentration evolution, and displacements due to the applied stress, pore pressure, and solute concentration difference between the sample and the circulation fluid. The presented solution will not only help validate numerical simulations but also assist in calibrating and interpreting laboratory results on dual-porosity dual-permeability shale. It is recommended that the analytical solutions of radial and axial displacements be used to match the corresponding laboratory-recorded data to determine shale dual permeability and chemo-electrical parameters including membrane coefficient, ions diffusion coefficients, and electro-osmotic permeability.

A comparative study of optimization techniques for identifying soil parameters in geotechnical engineering was first presented. The identification methodology with its 3 main parts, error function, search strategy, and identification procedure, was introduced and summarized. Then, current optimization methods were reviewed and classified into 3 categories with an introduction to their basic principles and applications in geotechnical engineering. A comparative study on the identification of model parameters from a synthetic pressuremeter and an excavation tests was then performed by using 5 among the mostly common optimization methods, including genetic algorithms, particle swarm optimization, simulated annealing, the differential evolution algorithm and the artificial bee colony algorithm. The results demonstrated that the differential evolution had the strongest search ability but the slowest convergence speed. All the selected methods could reach approximate solutions with very small objective errors, but these solutions were different from the preset parameters. To improve the identification performance, an enhanced algorithm was developed by implementing the Nelder-Mead simplex method in a differential algorithm to accelerate the convergence speed with strong reliable search ability. The performance of the enhanced optimization algorithm was finally highlighted by identifying the Mohr-Coulomb parameters from the 2 same synthetic cases and from 2 real pressuremeter tests in sand, and ANICREEP parameters from 2 real pressuremeter tests in soft clay.

In this paper, a numerical model to predict flow-induced shear failure along pre-existing fractures is presented. The framework is based on a discrete fracture representation embedded in a continuum describing the damaged matrix. A finite volume method is used to compute both flow and mechanical equilibrium, whereas specifically tailored basis functions are used to account for the physics at discontinuities. The failure criterion is based on a maximum shear strength limit, which changes with varying compressive stress on the fracture manifold. The displacements along fracture manifolds are obtained such that force balance is achieved under conditions, where shear stress of the failing fracture segment is constrained to the maximum shear strength at the segment. Simultaneously, the fluid pressure is computed independently of the shear slip. A relaxation model approach is used to obtain the maximum shear limit on the fracture manifold, which leads to grid convergence.

The problem of predicting the geometric structure of induced fractures is highly complex and significant in the fracturing stimulation of rock reservoirs. In the traditional continuous fracturing models, the mechanical properties of reservoir rock are input as macroscopic quantities. These models neglect the microcracks and discontinuous characteristics of rock, which are important factors influencing the geometric structure of the induced fractures. In this paper, we simulate supercritical CO_{2} fracturing based on the bonded particle model to investigate the effect of original natural microcracks on the induced-fracture network distribution. The microcracks are simulated explicitly as broken bonds that form and coalesce into macroscopic fractures in the supercritical CO_{2} fracturing process. A calculation method for the distribution uniformity index (DUI) is proposed. The influence of the total number and DUI of initial microcracks on the mechanical properties of the rock sample is studied. The DUI of the induced fractures of supercritical CO_{2} fracturing and hydraulic fracturing for different DUIs of initial microcracks are compared, holding other conditions constant. The sensitivity of the DUI of the induced fractures to that of initial natural microcracks under different horizontal stress ratios is also probed. The numerical results indicate that the distribution of induced fractures of supercritical CO_{2} fracturing is more uniform than that of common hydraulic fracturing when the horizontal stress ratio is small.

Two theories may be used to analyze overdamped variable-head (slug) tests in aquifer materials. The first theory assumes that the solid matrix strain has a negligible influence. The second theory takes into account some elastic and immediate strain. Something is wrong with these theories because they yield different hydraulic conductivity values. This paper explains what is wrong after establishing the strain-stress elastic equations for a slug test in 2 ideal conditions: plane strain and spherical symmetry. The equations show that the radial contraction (or elongation) and tangential elongation (or contraction) yield a null volumetric strain. As a result, the conservation is described by the Laplace equation, which is used by the first theory. This first theory is the only one to yield correct solutions. The diffusion equation, with storativity, which is used by the second theory, is physically ill founded for slug tests in aquifers. This new proof scientifically confirms previously raised doubts and experimental proofs that the second theory is ill founded.

This paper introduces sequential limit analysis (SLA) as a method for modelling large plastic deformations of purely cohesive materials such as undrained clay. The method involves solving a series of consecutive small-deformation plastic collapse problems using finite element limit analysis, thus ensuring high levels of accuracy, efficiency, and robustness. The techniques needed to develop an SLA implementation for two-dimensional (plane strain) problems are described in detail, including model geometry updating routines, treatment of rigid bodies, interfaces and boundaries, and periodic remeshing and interpolation of field variables. A simple total stress-based constitutive model is used to account for strain softening and strain rate effects. Extensive verifications and validations are performed using analytical solutions and physical model test results, comparing both collapse loads and failure mechanisms, to demonstrate the effectiveness of the SLA approach. Additional solution quality checks on the bracketing discrepancy between lower-bound and upper-bound limit analysis solutions, and on the incompressibility of the rigid-plastic material, are also presented.

Numerical models based on the discrete element method are used to study the fracturing process in brittle rock-like materials under direct and indirect tension. The results demonstrate the capacity of the model to capture the essential characteristics of fracture including the onset of crack propagation, stable and unstable crack growth, arrest and reinitiation of fracturing, and crack branching. Simulations of Brazilian indirect tension tests serve to calibrate the numerical model, relating macroscopic tensile strength of specimens to their micromechanical breakage parameters. A second suite of simulations reveals a linear relationship between the tensile strength of specimens and the loading stress for which mode I tensile crack propagation ensues. Based on these results, a crack initiation criterion for brittle materials is proposed, prescribing the stressing conditions required to induce tensile failure. Such a criterion, if broadly applicable, provides a practical means to rapidly assess the failure potential of brittle materials under tensile loads.

This paper presents a numerical scheme for fluid-particle coupling that uses the discrete element method by taking into consideration solid deformation and pore pressure generation. A new water particle element is introduced to calculate pore water pressure due to porosity changes. The water particle element has the same size and shape as the solid element and experiences the same amount of deformation. On the basis of the effective stress principle at the element contact, the total force is equal to the sum of the force transmitted through the solid element contact and the water particle force due to pore water pressure. Analytical solutions of traditional soil mechanics problems, such as isotropic compression and consolidated triaxial undrained test, are used to quantitatively validate the proposed model. The numerical results show good agreement between the model and the analytical solutions. The model therefore provides an effective method to calculate pore pressure in a porous medium in discrete modeling.

A Fokker-Planck-Kolmogorov (FPK) equation approach has recently been developed to probabilistically solve any elastic-plastic constitutive equation with uncertain material parameters by transforming the nonlinear, stochastic constitutive rate equation into a linear, deterministic partial differential equation (PDE) and thereby simplifying the numerical solution process. For an uniaxial problem, conventional numerical techniques, such as the finite difference or finite element methods, may be used to solve the resulting univariate FPK PDE. However, for a multiaxial problem, an efficient algorithm is necessary for tractability of the numerical solution of the multivariate FPK PDE. In this paper, computationally efficient algorithms, based on a Fourier spectral approach, are presented for solving FPK PDEs in (stress) space and (pseudo) time, having space-independent but time-dependent coefficients and both space- and time-dependent coefficients, that commonly arise in probabilistic elasto-plasticity. The algorithms are illustrated by probabilistically simulating 2 common laboratory constitutive experiments in geotechnical engineering, namely, the unconfined compression test and the unconsolidated undrained triaxial compression test.

The capability of a bounding surface plasticity model with a vanishing elastic region to capture the multiaxial dynamic hysteretic responses of soil deposits under broadband (eg, earthquake) excitations is explored by using data from centrifuge tests. The said model was proposed by Borja and Amies in 1994 (*J. Geotech. Eng.*, 120, 6, 1051-1070), which is theoretically capable of representing nonlinear soil behavior in a multiaxial setting. This is an important capability that is required for exploring and quantifying site topography, soil stratigraphy, and kinematic effects in ground motion and soil-structure interaction analyses. Results obtained herein indicate that the model can accurately predict key response data recorded during centrifuge tests on embedded specimens—including soil pressures and bending strains for structural walls, structures' racking displacements, and surface settlements—under both low- and high-amplitude seismic input motions, which was achieved after performing only a basic material parameter calibration procedure. Comparisons are also made with results obtained using equivalent linear models and a well-known pressure-dependent multisurface plasticity model, which suggested that the present model is generally more accurate. The numerical convergence behavior of the model in nonlinear equilibrium iterations is also explored for a variety of numerical implementation and model parameter options. To facilitate broader use by researchers and practicing engineers alike, the model is implemented as a “user material” in ABAQUS Standard for implicit time stepping.

The effective stress concept for solid-fluid 2-phase media was revisited in this work. In particular, the effects of the compressibility of both the pore fluid and the soil particles were studied under 3 different conditions, i.e., undrained, drained, and unjacketed conditions based on a Biot-type theory for 2-phase porous media. It was confirmed that Terzaghi effective stress holds at the moment when soil grains are assumed to be incompressible and when the compressibility of the pore fluid is small enough compared to that of the soil skeleton. Then, isotropic compression tests for dry sand under undrained conditions were conducted within the triaxial apparatus in which the changes in the pore air pressure could be measured. The ratio of the increment in the cell pressure to the increment in the pore air pressure, *m*, corresponds to the inverse of the *B* value by Bishop and was obtained during the step loading of the cell pressure. In addition, the *m* values were evaluated by comparing them with theoretically obtained values based on the solid-fluid 2-phase mixture theory. The experimental *m* values were close to the theoretical values, as they were in the range of approximately 40 to 185, depending on the cell pressure. Finally, it was found that the soil material with a highly compressible pore fluid, such as air, must be analyzed with the multi-phase porous mixture theory. However, Terzaghi effective stress is practically applicable when the compressibilities of both the soil particles and the pore fluid are small enough compared to that of the soil skeleton.

This paper presents a system reliability analysis method for soil slopes on the basis of artificial neural networks with computer experiments. Two types of artificial neural networks, multilayer perceptrop (MLP) and radial basis function networks (RBFNs), are tested on the studied problems. Computer experiments are adopted to generate samples for constructing the response surfaces. On the basis of the samples, MLP and RBFN are used for establishing the response surface to approximate the limit state function, and Monte Carlo simulation is performed via the MLP and RBFN response surfaces to estimate the system failure probability of slopes. Experimental results on 3 examples show the effectiveness of the proposed methodology.

Predicting the deformations of deep reservoirs due to fluid withdrawal/injection is a challenging task that could have important environmental, social, and economical impacts. Finite element models, if endowed with an appropriate constitutive law, represent a useful tool for computing the displacements, the deformations, and the stress distributions in reservoir applications. Several studies show that hypoelastic laws, based on a stress-dependent vertical compressibility, are able to provide accurate results, confirmed by in situ and satellite measurements. On the other hand, such laws present some weaknesses related to the numerical implementation, in particular due to the nonsymmetry of the tangent operator. This paper presents a new constitutive model based on 2 invariants (the mean normal and deviatoric stresses), characterized by a variable pressure-dependent bulk modulus *K*. This constitutive law allows for overcoming most shortcomings of the hypoelastic law, although preserving the same accuracy, reliability, and ease of use and calibration. This paper presents a procedure to identify the parameters of the new model, starting from the typically available data on the vertical compressibility. Numerical results show a good agreement between the 2 laws, suggesting the proposed approach as a valid alternative in reservoir applications.

Based on relevant experimental data of a petroleum cement paste under mechanical loading and chemical leaching, an elastic-plastic model is first proposed by taking into account plastic shearing and pore collapse. The degradation of mechanical properties induced by the chemical leaching is characterized by a chemical damage variable which is defined as the increase of porosity. Both elastic and plastic properties of the cement paste are affected by the chemical damage. The proposed model is calibrated from and applied to describe mechanical responses in triaxial compression tests respectively on sound and fully leached samples. In the second part, a phenomenological chemical model is defined to establish the relationship between porosity change and calcium dissolution process. The dissolution kinetics is governed by a diffusion law taking into account the variation of diffusion coefficient with calcium concentration. The chemical model is coupled with the mechanical model, and both are applied to describe mechanical response of cement paste samples subjected to progressive chemical leaching and compressive stresses. Comparisons between experimental data and numerical results are presented.

Experimental evidence has shown that the liquefaction instability of sands can be affected by its material density, stress state, and inherent anisotropy. In order to predict the initiation of the static liquefaction of inherent cross-anisotropic sands under multidimensional stress conditions, a rational constitutive model is needed. An elastoplasticity model able to capture the influences of intermediate principal stress ratio (*b* = (*σ*_{2} − *σ*_{3})/(*σ*_{1} − *σ*_{3})) and loading direction on stress–strain relationships and volumetric properties was proposed. The yield function was formulated to be controlled by Lode angle, loading direction, and material state; the stress–dilatancy was a material state-dependent function. After using the existing drained hollow cylinder tests to validate the proposed model, this model was used to simulate the existing undrained hollow cylinder tests. During this simulation, the second-order work criterion was used to determine the initiation of static liquefaction. The results showed that an increase in both the intermediate principal stress ratio and the loading angle induces a decrease in the second-order work. Static liquefaction is initiated more easily at a stress state with a large intermediate principal stress ratio and a large loading angle, and the mobilized friction angle at the instability points decreases with the intermediate principal stress ratio and the loading angle. Copyright © 2017 John Wiley & Sons, Ltd.

The strength anisotropy of granular materials deposited under gravity has mostly been attributed to elongated particles' tendency to align long axes along the bedding plane direction. However, recent experiments on near-spherical glass beads, for which preferred particle alignment is inapplicable, have exhibited surprisingly strong strength anisotropy. This study tests the hypothesis that certain amount of fabric anisotropy caused by the anisotropic stress during deposition under gravity can be locked in a circular-particle deposit. Such locked-in fabric anisotropy can withstand isotropic consolidation and leads to significant strength anisotropy. 2D discrete element method simulations of direct shear tests on circular-particle deposits are conducted in this study, allowing for the monitoring of both stress and fabric. Simulations on both monodispersed and polydispersed circular-particle samples generated under downward gravitational acceleration exhibit clear anisotropy in shear strength, thereby proving the hypothesis. When using contact normal-based and void-based fabric tensors to quantify fabric anisotropy in the material, we find that the intensity of anisotropy is discernible but low prior to shearing and is dependent on the consolidation process and the dispersity of the sample. The fact that samples with very low anisotropy intensity measurements still exhibit fairly strong strength anisotropy suggests that current typical contact normal-based and void-based second-order fabric tensor formulations may not be very effective in reflecting the anisotropic peak shear strength of granular materials. Copyright © 2017 John Wiley & Sons, Ltd.

The estimation of wave transmission across the fractured rock masses is of great importance for rock engineers to assess the stability of rock slopes in open pit mines. Presence of fault, as a major discontinuity, in the jointed rock mass can significantly impact on the peak particle velocity and transmission of blast waves, particularly where a fault contains a thick infilling with weak mechanical properties. This paper aims to study the effect of fault properties on transmission of blasting waves using the distinct element method. First, a validation study was carried out on the wave transmission across a single joint and different rock mediums through undertaking a comparative study against analytical models. Then, the transmission of blast wave across a fault with thick infilling in the Golgohar iron mine, Iran, was numerically studied, and the results were compared with the field measurements. The blast wave was numerically simulated using a hybrid finite element and finite difference code which then the outcome was used as the input for the distinct element method analysis. The measured uplift of hanging wall, as a result of wave transmission across the fault, in the numerical model agrees well with the recorded field measurement. Finally, the validated numerical model was used to study the effect of fault properties on wave transmission. It was found that the fault inclination angle is the most effective parameter on the peak particle velocity and uplift. Copyright © 2017 John Wiley & Sons, Ltd.

This paper develops a method to analyze the piled raft foundation under vertical harmonic load. This method takes into account the interactions among the piles, soil, and raft. The responses of the piles and raft are formulated as a series of equations in a suitable way and that of layered soils is simulated with the use of the analytical layer-element method. Then, according to the equilibrium and continuity conditions at the piles–soil–raft interface, solutions for the piled raft systems are obtained and further demonstrated to be correct through comparing with the existing results. Finally, some examples are given to investigate the influence of the raft, pile length-diameter ratio, and layering on the response of the piled raft foundations. Copyright © 2017 John Wiley & Sons, Ltd.

This paper presents semi-analytical solutions to Fredlund and Hasan's one-dimensional consolidation of unsaturated soils with semi-permeable drainage boundary under time-dependent loadings. Two variables are introduced to transform two coupled governing equations of pore-water and pore-air pressures into an equivalent set of partial differential equations, which are easily solved by the Laplace transform. The pore-water pressure, pore-air pressure and settlement are obtained in the Laplace domain. Crump's method is adopted to perform the inverse Laplace transform in order to obtain semi-analytical solutions in time domain. It is shown that the present solutions are more general and have a good agreement with the existing solutions from literatures. Furthermore, the current solutions can also be degenerated into conventional solutions to one-dimensional consolidation of unsaturated soils with homogeneous boundaries. Finally, several numerical examples are provided to illustrate consolidation behavior of unsaturated soils under four types of time-dependent loadings, including instantaneous loading, ramp loading, exponential loading and sinusoidal loading. Parametric studies are illustrated by variations of pore-air pressure, pore-water pressure and settlement at different values of the ratio of air–water permeability coefficient, depth and loading parameters. Copyright © 2017 John Wiley & Sons, Ltd.

Wave propagation and localization in ordered and disordered multi-span beams on elastic foundations due to moving harmonic loads are investigated by using the transfer matrix methodology. The transfer matrix, as a function of the frequency and velocity of the moving harmonic load, of the periodic beam is formulated in a coordinate system moving with the load. The expressions of critical velocities, cut-off frequency of an associated uniform beam without discrete spaced supports, are determined through the analysis of the wavenumbers, and the dynamic responses of the beam are also examined. For the ordered and disordered case, the propagation constants and localization factors are respectively employed to identify the velocity and frequency pass bands and stop bands in order to examine whether the perturbation can propagate along the structure or not. The effects of the periodicity, disorder level, excitation frequency, and moving velocity are studied in detail. The validity of the obtained results is confirmed by evaluating the transverse deformation of the beams through the finite element simulations. Copyright © 2017 John Wiley & Sons, Ltd.

Granular materials react with complicated mechanical responses when subjected to external loading paths. This leads to sophisticated constitutive formulations requiring large numbers of parameters. A powerful and straightforward way consists in developing micro-mechanical models embedding both micro-scale and meso-scale. This paper proposes a 3D micro-mechanical model taking into account an intermediate scale (meso-scale) that makes it possible to describe a variety of constitutive features in a natural way. The comparison between experimental tests and numerical simulations reveals the predictive capability of this model. Particularly, several simulations are carried out with different confining pressures and initial void ratios, based on the fact that the critical state is quantitatively described without requiring any critical state formulations and parameter. The model mechanism is also analyzed from a microscopic view, wherein the evolution of some key microscopic parameters is investigated. Copyright © 2017 John Wiley & Sons, Ltd.

An analytical approach using the three-dimensional displacement of a soil is investigated to provide analytical solutions of the horizontal response of a circular pile subjected to lateral loads in nonhomogeneous soil. The rocking stiffness coefficient of the pile shaft in homogeneous soil is derived from the analytical solution taking into account the three-dimensional displacement represented in terms of scalar potentials in the elastic three-dimensional analysis. The lateral stiffness coefficient of the pile shaft in nonhomogeneous soil is derived from the rocking stiffness coefficient taking into account the rocking rotation of a rigid pile shaft. The relationship between horizontal displacement, rotation, moment, and shear force of a pile subjected to horizontal loads in nonhomogeneous soil is obtainable in the form of the recurrence equation. The formulation of the lateral displacement and rotation of the pile base subjected to lateral loads in nonhomogeneous soils is presented by taking into account Mindlin's equation and the equivalent thickness for soil layers in the equivalent elastic method. There is little difference between lateral, rocking, and couple stiffness coefficients each obtained from both the two-dimensional and three-dimensional methods except for the case of Poisson's ratio near 0.5. The comparison of results calculated by the current method for a pile subjected to lateral loads in homogeneous and nonhomogeneous soils has shown good agreement with those obtained from analytical and numerical methods. Copyright © 2017 John Wiley & Sons, Ltd.

To accurately predict soil volume changes under thermal cycles is of great importance for analysing the performance of many earth structures such as the energy pile and energy storage system. Most of the existing thermo-mechanical models focus on soil behaviour under monotonic thermal loading only, and they are not able to capture soil volume changes under thermal cycles. In this study, a constitutive model is proposed to simulate volume changes of saturated soil subjected to cyclic heating and cooling. Two surfaces are defined and used: a bounding surface and a memory surface. The bounding surface and memory surface are mainly controlled by the preconsolidation pressure (a function of plastic volumetric strain) and the maximum stress experienced by the soil, respectively. Under thermal cycles, the distance of the two surfaces and plastic modulus increase with an accumulation of plastic strain. By adopting the double surface concept, a new elastoplastic model is derived from an existing single bounding surface thermo-mechanical model. Comparisons between model predictions and experimental results reveal that the proposed model is able to capture soil volume changes under thermal cycles well. The plastic strain accumulates under thermal cycles, but at a decreasing rate, until stabilization. Copyright © 2017 John Wiley & Sons, Ltd.

No abstract is available for this article.

]]>The paper explores application of the engineered increase in soil permeability, achieved using reaction of guanidinium solutions with smectite soils, to geotechnical problems. The comparison between the finite element analysis of the enhanced permeability model for axisymmetric conditions and a simplified analytical solution demonstrates the importance of accounting for diffusive and dispersive fluxes. In order to illustrate possible practical application of the proposed soil improvement technique, two geotechnical examples have been numerically explored: improving performance of a ground water well and the stabilization of a slope by chemically enhanced drainage. For the well application, it has been demonstrated that for a relatively small degree of treatment, the power consumption can be reduced to a half, compared with the non-treated soil. For the slope stability application, the water table downstream of the drain can be significantly lowered using moderate pump/collector pressures at the centre of the drain, causing a higher increase in the factor of safety for a larger area subjected to the chemically enhanced drainage. The particularly promising result is that in both applications the largest gain in the well/drain efficiency has been observed for smaller chemically enhanced areas, where a short duration of treatment and small amounts of chemicals decrease the power consumption and increase the safety factor at the highest rate. Copyright © 2017 John Wiley & Sons, Ltd.

Deep excavation in some geological media needs lining of the gallery. This could limit the extent of the so-called excavation damaged zone and the resulting convergence of the material due to tunneling. Boom clay, the reference potential host rock in Belgium for disposal of high-level radioactive waste, is one of these media for which lining of the gallery walls is essential. A correct simulation of the lining behavior in the course of the excavation process, where the rock comes into contact with the lining, and in the long term, remains a significant challenge in analysis of the whole coupled phenomena of rock in interaction with the lining. This study aims to numerically model the lining behavior. The main objective is to develop a model that could realistically simulate the behavior of a discontinuous lining made of concrete segments. We propose to numerically analyze the response of the blocks in contact with each other and in interaction with rock, with the use of zero-thickness interface elements. To validate the developed model and a proposed approach, a particular analysis compares the obtained results with the available *in situ* measurements. This study then discusses the deficiency of the simplistic model that considers a continuous lining. In addition, regarding the contact mechanism on the interface between the rock and the lining, the obtained results demonstrate an interesting relation between the contact phenomena and the shear banding within the rock around the gallery. Copyright © 2017 John Wiley & Sons, Ltd.

The use of the asymptotic limit can greatly simplify the theoretical analysis of chemical dissolution front instabilities in fluid-saturated rocks and therefore make it possible to obtain mathematical solutions, which often play a crucial role in understanding the propagation behavior of chemical dissolution fronts in chemical dissolution systems. However, there has been a debate in recent years that the asymptotic limit of the acid dissolution capacity (i.e., the acid dissolution capacity number approaching zero) alone cannot lead to a sharp dissolution front of the Stefan type in the acidization dissolution system, in which the dissolvable minerals of carbonate rocks are chemically dissolved by the injected acid flow. The acid dissolution capacity number is commonly defined as the ratio of the volume of the carbonate rock dissolved by an acid to that of the acid. In this paper, we use four different proof methods, including (i) direct use of the fundamental concepts; (ii) use of the mathematical governing equations of an acidization dissolution system; (iii) use of the different time scaling approach; and (iv) use of a moving coordinate system approach, to demonstrate that the asymptotic limit of the acid dissolution capacity can indeed lead to sharp dissolution fronts of the Stefan type in acidization dissolution systems on a much larger time scale (than the dissolution time scale). Our new finding is that on the reaction time scale, the condition of the conventional time derivative of porosity approaching zero alone can ensure that the acidization dissolution front has a sharp shape of the Stefan type. Copyright © 2017 John Wiley & Sons, Ltd.