A few things stuck out to me, some of which I tweeted, but the one that I keep thinking about is the Leitner System, which they describe thusly:

This struck me for a few reasons. First, I love the idea that the “flashcards” don’t have to be what we typically think of as flash cards, but rather representations of anything we need to practice. Second, it’s a system that is learner-led, so if I can get my young mathematicians onto the system, they can run it themselves. (And extend it to other parts of their lives.)

So my thought became thus: how can I weave this system into my classroom? Here’s my thoughts. I’d love some feedback.

- Create a system of boxes (folders? tabs?) – I’m envisioning four in a set – for each student.
- At the end of each lesson, have the class write on (an) index card(s) something from that lesson that they think they should know. (This practice of summarizing their learning is also mentioned in
*Make It Stick*.) It could be a knowledge fact (the definition of a polygon), a skill (solving a linear equation), or something broader (what are some ways systems of linear inequalities are applied?). If it is a skill or broad question, it should not have a specific example. (So they shouldn’t have a card that has them solving 3x + 2 = 8 every time they see it.) Then put those cards in box 1. - Their standing HW is to practice whatever is in Box 1 every day. If it says something like “Solve an equation,” they need to generate their own equation, then solve it. (Generation is also mentioned by
*Make It Stick*as a way to increase stickiness.) When they get it right, move it down a box. When box 2 is full, practice those the next session, and so on. - On Fridays, give some time in class for students to practice, especially their box 2 or 3, if they didn’t have the time to do that at home. Then give the usual quiz.
- After taking a quiz, they should then reflect on what they did and didn’t know, and if there is something they didn’t know that isn’t on one of their cards, make a card for it right then and put it in box 1.
- To qualify for a quiz retake, all the topics for a quiz need to be on cards in Box 3 or 4. Otherwise, they need to study more before they can retake. (This would mostly be an honor system, as nothing stops them from just putting the cards in there.)

Does that sound feasible? What needs improvement?

]]>I shared this Desmos Activity Builder I made on Twitter, but never wrote a post about it. Oops! Let’s do that now.

This activity is basically adapted from Sam’s Blermions post that I had helped him think about but he did all the hard work of creating questions and sequencing them. I’ve used the blermion lesson in the past and it went well, but that last part lacked the punch I was hoping for, having to work with analog points and compiling them together myself. But then I thought – wait, Desmos AB does overlays that will do this beautifully, if I can just figure out how to get the Computation Layer to do what I want. So I set to it.

The pacing helped pause things to conjecture about what chormagons are – I stopped them at slide 5 so they can make those conjectures. I then advanced the pacing to 6 for the “surprise,” and 7-8 to make further conjectures. Look at some of theirs below.

Even showing them everyone’s, I tended to get conjectures about the shape their points make – a trapezoid, a pentagon, a heptagon, etc. (One person seemed to guess the truth, but that was uncommon.)

Then I showed them the overlay.

I saw at least one jaw *literally* drop, which totally made my day. We talked about why it might be a circle, and what that means for these shapes, then I introduce the proper terminology “cyclic quadrilaterals.” (I taught this lesson as an interstitial between my Quads unit and my Circles unit.)

Speaking of proper terminology, you may notice I called them Chormagons here, as opposed to Blermions. That’s important – Blermions is very google-able, it leads right to Sam’s post! But Chormagons led them nowhere. (And they were so mad about that!)

Now Chormagons will lead right here. So this is an important tip if you use this DAB: **make sure you change the name of the shape!**

I thought, then, instead of just springing my grading/SBG system on them, that we could reflect on what grading systems really mean and what they should do first, to prime the transition. So I created a grading Talking Points (with help from my Twitter mentions for some statements).

]]>To learn about math

To learn about people

To learn about cultures

To learn about relationships

To rebel in small ways

To rebel in larger ways

To comprehend a system that was not designed with our best interests at heart

To spread joy

To share knowledge

To forge connections and broaden horizons

To create experiences that linger in hearts and minds

To help others reach their true potential

To help myself reach it, too

To help us all figure out how this world works

To help us all figure out where to go next

This is hard

but there are harder things.

Changing the world

Dismantling structures that oppress

that

is hard.

But maybe that’s what this is,

just at a smaller scale?

Maybe “hard” is just a matter of scale.

Can we scale up what we do?

Maybe it is impossible –

the square-cube law restricts us all

and our attempts to scale up

collapse

under their own weight.

Sometimes a law must be broken

To do what is right.

Why not this one?

Why not push ourselves to the edge

of the possible?

Will we fail?

Will we fall?

I allow myself to fall

because only by falling can you see

the true heights and depths of where you were and where you can go

From the air, you can see everything.

]]>The task is a 7th grade task, and so involved nothing new for my high school geometry students – just area and perimeter/circumference. But the task has a lot of parts, not all of which are obvious from looking at it. So I gave them task, and then I was “less helpful.” In fact, I barely spoke during the lesson, only quietly clarifying things, but reflecting their proximity questions back towards themselves and their other group members.

Almost every group that attempted the task solved the problem on their own. (I followed up with an extension where they designed their own stained class on the coordinate plane and found the price using the same pricing, for those who finished quickly.) I had a group of three girls who don’t usually feel very confident in my class feel like rock stars after figuring the whole thing out themselves.

A few days ago, I saw this tweet:

Consider complex problems which require content from earlier grades…

with Jason Zimba at #coreadvocates pic.twitter.com/VM2wxPi1G5— MarleneLovanio (@mlovanio) May 20, 2018

I thought it really applied here. While the content was still related to what we were learning in high school geometry, the opportunity to solve a complex task with little scaffolding was really helped by using a task from an earlier grade. I recommend it.

]]>I gave the students the above sheet, starting off with some noticing/wondering about the graphed figure. Then I assigned each table a different method to prove that the quadrilateral is a square. Each group was off to their whiteboards to get started.

It was really great to see each group discussing the problem so intently, and it reminded me how easy it is to facilitate discussion when up at the vertical whiteboards. Afterwards, the students went around in a gallery walk to compare their proofs to the other methods. They analyzed how they were similar, how they were different, and thought about which method they might prefer in the future. (Some comments included things like preferring method 2 because it only involved slopes, even though it involves more lines.)

The whole lesson went so smoothly and had tons of intra- and inter-group discussion. Need to use the structure again.

]]>I had decided that grading them on correctness in a practice SAT is not appropriate. I had told them this before, and they knew their grades on their assignments were more for things like how they applied the tactic we were learning. But last class they walked in and I gave them a Part 3 exam (the non-calculator part) and told them it would be graded – but there would be a plot twist. For right now, just take it individually, except this half of the room should start from the back and go forward. Oh, and you get 5 fewer minutes than normal.

While they were working, I went around on my whiteboards and put up the numbers 1 through 20 well spread out, and an ABCD for 1-15. (I wish I had taken pictures!) This started to get them suspicious. When time was up, I told them my grading scheme: it was out of 5 pts, and they lost a point for every question they got wrong. So if you got 15 right, that’s a 0. But! They had the remaining 20 minutes of class to work together and figure out what the right answers should be. And if anyone got less than 15, the whole class lost a point – forcing them all to work together. (With limits, of course – they won’t be penalized for that kid who went to the bathroom for 15 minutes during this, for example.)

A suggestion I made to them was to go around and make votes for their answer for each question. A clear consensus might mean that that is the right answer. However! Don’t be afraid to put your answer down even if everyone else’s is different. I’ve seen questions where only one person got it right. I told them they need to convince each other of what the right answer is.

Let me tell you, I heard so many great conversations as they and I went around the room. Because it’s the SAT, no one gets them all right, so everyone is being pushed to make a convincing argument that their answer is right. Students who weren’t sure got explanations from others. It was delightful!

About halfway, I noticed a clear consensus for about 15 of the 20 questions, but the middle 5 were really quite split. So I lead the class in sharing out their reasoning for some of those questions – never saying what the right answer was, but again letting them convince each other.

It was a nice collaborative effort – I highly recommend it.

]]>Dwight Eisenhower was born on October 14, 1890, and died on March 28, 1969. What was his age, in years, at the time of his death?

(A) 77

(B) 78

(C) 79

(D) 80

When my boyfriend went to his grandmother’s funeral, he found himself confused about exactly how old she was. Was she 93 or 94? He heard different people say different things. Eventually he figured it out. In Vietnam (and apparently in other places in East Asia), when you are born, you are 1. The next year, you are 2. And this ticks over at the beginning of the solar year, not on your birthday. So I, born on December 22, would, 374 days after my birth, have been considered to be 3 years old using this reckoning. (It might be more accurate to say that I’m in my 3rd year – being alive during 1985, 1986, and 1987 at that point.)

Earlier this week, in my SAT Problem Solving class, we encountered the problem at the top of this post. The correct answer, according to the book, is (B) 78. But according to the Vietnamese reckoning, he’d be 80, and the answer would be (D).

Before my boyfriend went to that funeral, I wouldn’t have even looked at this question twice. I had never heard of another way of determining age. And I’m willing to bet the people who wrote this question haven’t, either.

It’s a small example of the way tests can be biased, and how having more diverse voices in the process could help avoid this kind of mistake.

]]>To get an idea of what the community is interested in hearing about and/or learning about we set up a Google Doc (http://bit.ly/TMC17-1). It’s a GDoc for people to list their interests and someone who might be good to present that topic. The form is still open for editing, so if you have an idea of what you’d like to see someone else present as you’re writing your own proposal, feel free to add it!

This conference is by teachers, for teachers. That means we need you to present. Yes, you! In the past everyone who submitted on time was accepted, however, this year we cannot guarantee that everyone who submits a proposal will be accepted. We do know that we need 10-12 morning sessions (these sessions are held 3 consecutive mornings for 2 hours each morning) and 12 sessions at each afternoon slot (12 half hour sessions that will be on Thursday, July 27 and 48 one hour sessions that will be either Thursday, July 27, Friday, July 28, or Saturday, July 29). That means we are looking for somewhere around 70 sessions for TMC17.

What can you share that you do in your classroom that others can learn from? Presentations can be anything from a strategy you use to how you organize your entire curriculum. Anything someone has ever asked you about is something worth sharing. And that thing that no one has asked about but you wish they would? That’s worth sharing too. Once you’ve decided on a topic, come up with a title and description and submit the form. The description you submit now is the one that will go into the program, so make sure it is clear and enticing. Please make sure that people can tell the difference between your session and one that may be similar. For example, is your session an Intro to Desmos session or one for power users? This helps us build a better schedule and helps you pick the sessions that will be most helpful to you!

If you have an idea for something short (between 5 and 15 minutes) to share, plan on doing a My Favorite. Those will be submitted at a later date.

The deadline for submitting your TMC Speaker Proposal is January 16, 2017 at 11:59 pm Eastern time. This is a firm deadline since we will reserve spots for all presenters before we begin to open registration on February 1st.

Thank you for your interest!

Team TMC17 – Lisa Henry, Lead Organizer, Mary Bourassa, Tina Cardone, James Cleveland, Daniel Forrester, Megan Hayes-Golding, Cortni Muir, Jami Packer, Sam Shah, and Glenn Waddell

]]>After working through the requisite problems, I wanted a little more practice, so I came up with a game that they could play, based on the Bid-a-Note sections of the old “Name That Tune” game shows. I called it **Name That Solution**. Gameplay goes like this:

- Start over with a simple equation, like “x = 2.”
- Each turn, a team can change the equation in one way to make it more complex. (For example, make it “x + 3 = 2” or “5x = 2”.) Only one operation and one term can be added at most per turn. The team finished by saying “I can name the solution of that equation.”
- On a team’s turn, they may challenge the other team to, in fact, actually solve it. (“Go ahead! Prove it!”) If the challenged team can, in fact, solve the equation, they earn a point. If not, the challenging team gets a point.
- First team to 5 points wins.

They played on whiteboards so they can change the equations quickly. The students quickly learned to not overextend themselves when making the equations harder, lest they find themselves challenged. So it leads to a nice exercise of constantly mentally making sure you know the steps to solve something before you take your turn, getting a lot of practice.

At the end of one of the classes, I did a big class-wide version, half the class versus the other half. But they wound up being very conservative, with neither team challenging the other and only take moves they knew they could solve. Which I guess was the point.

]]>